Bombyxin is a growth factor for wing imaginal disks in Lepidoptera.

نویسندگان

  • H Frederik Nijhout
  • Laura W Grunert
چکیده

The mechanisms that control the growth rate of internal tissues during postembryonic development are poorly understood. In insects, the growth rate of imaginal disks varies with nutrition and keeps pace with variation in somatic growth. We describe here a mechanism by which the growth of wing imaginal disks is controlled. When wing imaginal disks of the butterfly Precis coenia are removed from the larva and placed in a standard nutrient-rich tissue culture medium they stop growing, suggesting that nutrients alone are not sufficient to support normal growth. Such disks can be made to grow at a normal rate by supplementing the culture medium with an optimal concentration of the steroid hormone 20-hydroxyecdysone and with hemolymph taken from growing larvae. The growth-promoting activity of the hemolymph is caused by a heat-stable factor that can be extracted from the CNS and appears to be identical to the neurohormone bombyxin, a member of the insulin family of proteins. Synthetic bombyxin stimulates growth at concentrations as low as 30 ngml, and specific antibodies to bombyxin completely remove growth-promoting activity from the hemolymph. Bombyxin evidently acts together with 20-hydroxyecdysone to stimulate cell division and growth of wing imaginal disks. It appears that the level of bombyxin in the hemolymph is modulated by the brain in response to variation in nutrition and is part of the mechanism that coordinates the growth of internal organs with overall somatic growth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Switch in the Control of Growth of the Wing Imaginal Disks of Manduca sexta

BACKGROUND Insulin and ecdysone are the key extrinsic regulators of growth for the wing imaginal disks of insects. In vitro tissue culture studies have shown that these two growth regulators act synergistically: either factor alone stimulates only limited growth, but together they stimulate disks to grow at a rate identical to that observed in situ. It is generally thought that insulin signalin...

متن کامل

Insulin/IGF signaling regulates the change in commitment in imaginal discs and primordia by overriding the effect of juvenile hormone.

At the beginning of the final larval (fifth) instar of Manduca sexta, imaginal precursors including wing discs and eye primordia initiate metamorphic changes, such as pupal commitment, patterning and cell proliferation. Juvenile hormone (JH) prevents these changes in earlier instars and in starved final instar larvae, but nutrient intake overcomes this effect of JH in the latter. In this study,...

متن کامل

Competition among growing organs and developmental control of morphological asymmetry

Fluctuating asymmetry is often used as a measure of developmental instability, although its developmental basis is poorly understood. Theoretical models and experimental studies have suggested that feedback interactions between structures on the left and right sides of the body play a pivotal role in the control of asymmetry. Here we provide experimental evidence that competition for a limiting...

متن کامل

Nubbin encodes a POU-domain protein required for proximal-distal patterning in the Drosophila wing.

The nubbin gene is required for normal growth and patterning of the wing in Drosophila. We report here that nubbin encodes a member of the POU family of transcription factors. Regulatory mutants which selectively remove nubbin expression from wing imaginal discs lead to loss of wing structures. Although nubbin is expressed throughout the wing primordium, analysis of genetic mosaics suggests a l...

متن کامل

Subdivision of the Drosophila wing imaginal disc by EGFR-mediated signaling.

Growth and patterning of the Drosophila wing imaginal disc depends on its subdivision into dorsoventral (DV) compartments and limb (wing) and body wall (notum) primordia. We present evidence that both the DV and wing-notum subdivisions are specified by activation of the Drosophila Epidermal Growth Factor Receptor (EGFR). We show that EGFR signaling is necessary and sufficient to activate aptero...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 99 24  شماره 

صفحات  -

تاریخ انتشار 2002